Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies
نویسندگان
چکیده
Multigenerational oxidation chemistry of atmospheric organic compounds and its effects on aerosol loadings and chemical composition is investigated by implementing the Two-Dimensional Volatility Basis Set (2-D-VBS) in a Lagrangian host chemical transport model. Three model formulations were chosen to explore the complex interactions between functionalization and fragmentation processes during gas-phase oxidation of organic compounds by the hydroxyl radical. The base case model employs a conservative transformation by assuming a reduction of one order of magnitude in effective saturation concentration and an increase of oxygen content by one or two oxygen atoms per oxidation generation. A second scheme simulates functionalization in more detail using group contribution theory to estimate the effects of oxygen addition to the carbon backbone on the compound volatility. Finally, a fragmentation scheme is added to the detailed functionalization scheme to create a functionalization-fragmentation parameterization. Two condensed-phase chemistry pathways are also implemented as additional sensitivity tests to simulate (1) heterogeneous oxidation via OH uptake to the particle-phase and (2) aqueous-phase chemistry of glyoxal and methylglyoxal. The model is applied to summer and winter periods at three sites where observations of organic aerosol (OA) mass and O:C were obtained during the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) campaigns. The base case model reproduces observed mass concentrations and O:C well, with fractional errors (FE) lower than 55 % and 25 %, respectively. The detailed functionalization scheme tends to overpredict OA concentrations, especially in the summertime, and also underpredicts O:C by approximately a factor of 2. The detailed functionalization model with fragmentation agrees well with the observations for OA concentration, but still underpredicts O:C. Both heterogeneous oxidation and aqueous-phase processing have small effects on OA levels but heterogeneous oxidation, as implemented here, does enhance O:C by about 0.1. The different schemes result in very different fractional attribution for OA between anthropogenic and biogenic sources. Published by Copernicus Publications on behalf of the European Geosciences Union. 10798 B. N. Murphy et al.: Application of the 2-D volatility basis set to field studies
منابع مشابه
Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set
A module predicting the oxidation state of organic aerosol (OA) has been developed using the two-dimensional volatility basis set (2D-VBS) framework. This model is an extension of the 1D-VBS framework and tracks saturation concentration and oxygen content of organic species during their atmospheric lifetime. The host model, a onedimensional Lagrangian transport model, is used to simulate air pa...
متن کاملA functional group oxidation model (FGOM) for SOA formation and aging
Secondary organic aerosol (SOA) formation from a volatile organic compound (VOC) involves multiple generations of oxidation that include functionalization and fragmentation of the parent carbon backbone and likely particlephase oxidation and/or accretion reactions. Despite the typical complexity of the detailed molecular mechanism of SOA formation and aging, a relatively small number of functio...
متن کاملAverage chemical properties and potential formation pathways of highly oxidized organic aerosol.
Measurements of ambient organic aerosol indicate that a substantial fraction is highly oxidized and low in volatility, but this fraction is generally not reproduced well in either laboratory studies or models. Here we describe a new approach for constraining the viable precursors and formation pathways of highly oxidized organic aerosol, by starting with the oxidized product and considering the...
متن کاملModelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol
A new organic aerosol module has been implemented into the EMEP chemical transport model. Four different volatility basis set (VBS) schemes have been tested in long-term simulations for Europe, covering the six years 2002–2007. Different assumptions regarding partitioning of primary organic aerosol and aging of primary semi-volatile and intermediate volatility organic carbon (S/IVOC) species an...
متن کاملSimulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 1: Assessing the influence of constrained multi-generational ageing
Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-thescience schemes in 3-D regional or global models that account for multi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015